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A B S T R A C T   

Computer vision has been utilized to extract safety-related information from images with the advancement of 
video monitoring systems and deep learning algorithms. However, construction safety management is a 
knowledge-intensive task; for instance, safety managers rely on safety regulations and their prior knowledge 
during a jobsite safety inspection. This paper presents a conceptual framework that combines computer vision 
and ontology techniques to facilitate the management of safety by semantically reasoning hazards and corre
sponding mitigations. Specifically, computer vision is used to detect visual information from on-site photos while 
the safety regulatory knowledge is formally represented by ontology and semantic web rule language (SWRL) 
rules. Hazards and corresponding mitigations can be inferred by comparing extracted visual information from 
construction images with pre-defined SWRL rules. Finally, the example of falls from height is selected to validate 
the theoretical and technical feasibility of the developed conceptual framework. Results show that the proposed 
framework operates similar to the thinking model of safety managers and can facilitate on-site hazard identi
fication and prevention by semantically reasoning hazards from images and listing corresponding mitigations.   

1. Introduction 

People working in construction are globally recognized to be highly 
prone to experiencing injuries, accidents, and even fatalities [1–3]. The 
continued introduction and modification of statutory regulations and 
the implementation of management practices to redress safety, acci
dents, and fatalities remain a pervasive problem despite the consider
able amount of research that has been undertaken. For instance, the 
Bureau of Labor Statistics (BLS) in the United States reported that more 
than 970 construction fatalities were reported in 2017 [4]. Approxi
mately 35 serious claims are reported each day in the construction in
dustry of Australia [5]. A total of 734 accidents were recorded in China 
in 2018, thereby leading to 840 death [2]. 

Computer vision has recently attracted increasing attention because 
of its potentials to overcome the drawbacks of manual observation of on- 
site hazards. Several computer vision approaches were proposed to 
detect unsafety behaviors or dangerous working conditions by extract
ing visual information automatically and continuously from on-site 
images or videos [6–11]. The development of deep learning algo
rithms further enhances the capability of computer vision on processing 

and analyzing visual imagery [12]; however, as a kind of end-to-end 
learning, computer vision approaches are limited in some areas 
requiring knowledge reasoning [13]. However, construction safety 
management is a type of knowledge-intensive job [14]. As shown in 
Fig. 1 (a), site managers and engineers must extract visual information 
using their perceptual capability when performing a jobsite safety in
spection; this information is then reasoned to identify potential hazards 
and corresponding mitigation measurements based on existing safety 
rules in regulations and their experiences [8]. 

Computer vision can automate visual tasks as human visual systems 
(detecting the two workers, concrete supports, ropes form Fig. 1(b)). 
However, inferring that workers are prone to experience falling from 
height and tripping hazards based on safety regulations is difficult for 
computer vision. Additionally, compared with safety inspectors, com
puter vision cannot give suggestions to mitigate potential hazards. This 
condition can be summarized as a “semantic gap,” which indicates the 
limitation of computer vision systems in extracting the visual data of 
what the cameras “see” and the substantial enhancement of the meaning 
of what they observe by considering the domain knowledge [15–17]. 

Ontology, a semantic technique, is used to provide safety domain 
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knowledge, which includes explicit and rich semantics, to support effi
cient knowledge management and reasoning on safety issues [14]. An 
ontology can provide a formal conceptualization of knowledge for a 
given domain [18]. The ontology technique provides a method for 
converting textual regulation knowledge of a specific domain into a 
specific and understandable format. Ontology has been widely used in 
construction safety management due to its benefits on knowledge rep
resentation and reasoning [19–22]. These studies show the potential of 
ontology technology on knowledge-based safety management, which 
may solve the “semantic gap” in current computer vision approaches 
[12,23]. [24] and Fang et al. [25] revealed evidence showing the ne
cessity of knowledge and computer vision in construction safety man
agement. Nevertheless, the combination of ontology and computer 
vision is still scarce in the construction industry. Additionally, previous 
studies lack detailed discussions on ontology development, which is 
important for construction safety management regarded as a 
knowledge-intensive task [14]. 

A framework that combines computer vision algorithms and a formal 
ontology model for construction safety management is developed in this 
paper. Computer vision algorithms are used in the proposed framework 
to capture visual information (e.g., objects and their spatial relation
ships) from onsite images, and an ontology model is established to 
represent the domain knowledge formally according to the five steps in 
Noy and McGuinness [26]. The visual information acquired by the 
computer vision would be transferred into instances in the developed 
ontology model for hazard inference. Specifically, potential hazards and 
their mitigation measurements would be inferred in a knowledge 
reasoner based on pre-defined Semantic Web Rule Language (SWRL) 
rules in the ontology model. Notably, this paper aims to illustrate the 
importance of ontology in helping computer vision function similarly to 
the human thinking model in construction safety management. Partic
ularly, this paper focuses on hazards associated with falls from height 
(FFH) because they are the most common safety issues that arise during 
construction [2,3,27,28]. The developed framework is validated using 
data derived from construction projects, which form part of the Wuhan 
Rail Transit System (China). 

The rest of this paper proceeds as follows. Section 2 reviews related 
works and summarizes the research gap. Section 3 comprehensively 
describes the entire framework integrating computer vision and 
ontology. Section 4 conducts a case study of FFH, while section 5 dis
cusses the finding and limitations. Section 6 concludes with implications 
for construction safety management. 

2. Related works 

2.1. Computer vision for construction safety management 

As previously mentioned, computer vision has been receiving 
widespread attention in construction and has been specifically used to 
examine hazards in construction, such as progress monitoring [29], 
productivity analysis [30], and health and safety monitoring [31–34]. 
Performing safety inspections is traditionally a time-consuming and 
labor-intensive process, requiring site managers and engineers to walk 
around the job site to determine hazards. Computer vision is regarded as 
a robust method to identify hazards from images automatically due to 
the inefficient and ineffective process of manual safety inspection [10, 
11,35–37]; d; [33]. 

Numerous algorithms were proposed for computer vision-based 
construction safety management, which can be classified as follows 
[37,38]: (1) shallow learning methods, such as support vector machine 
and histogram of oriented gradients; and (2) deep learning methods, 
such as the convolutional neural network (CNN) and recurrent neural 
network. Shallow learning methods are reliant on handcrafted features, 
which must be manually produced, thus adversely affecting the accuracy 
of their detection [39]. Compared with shallow learning approaches, 
deep learning can automatically extract sophisticated features from data 
with multiple levels of end-to-end representations [40,41]. In particular, 
CNN is the most commonly used to support computer vision due to its 
capability to detect objects accurately and reliably [42]. Various algo
rithms, such as the Single Shot Multibox Detector (SSD) [43], You Only 
Look Once [44], faster region-based CNN (Faster R–CNN) [44], and 
mask region-based CNN (Mask R–CNN) [45], have been developed to 
support the CNNs for object detection. Deep learning algorithms have 
considerably promoted computer vision-based applications, such as 
unsafe behavior detection [33,36,46], activity recognition [47,48], and 
object detection [11,49]. For example, Fang et al. [11] used faster 
R–CNN to detect non-hardhat-use behavior from surveillance videos. 
Ding et al. [36] demonstrated that a hybrid deep learning model can 
accurately identify unsafe actions during construction by integrating 
CNN and long short-term memory. Similarly, Fang et al. [33] created a 
Mask R–CNN algorithm to identify the unsafe behavior of people 
traversing structural supports. Luo et al. [48] proposed a discriminative 
model combining deep activity features and contextual information to 
recognize the activities of on-foot workers from on-site videos. 

Semantic knowledge is absent in computer vision-based construction 
safety management despite the ability of site managers and engineers to 
detect objects automatically using deep learning due to previous 
research [50]. Neural network models enable the computer vision sys
tem to achieve advanced performance on AI tasks [41], such as detecting 
objects from images or videos, due to their good representation and 

Fig. 1. Process of manual construction safety management and an example.  
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learning capabilities. However, construction safety management is a 
knowledge-intensive task [14]. The computer vision system cannot 
understand the hazard meaning behind the visual information without 
the semantic representation of safety knowledge. For instance, safety 
managers can use their prior knowledge to identify potential hazards 
and provide some mitigation measurements to prevent hazards in the 
workplace. Zhong et al. [51] also highlighted the semantic gap between 
high-level knowledge and low-level visual features obtained by com
puter vision systems. The upshot is an inability to judge hazards in 
complex scenes and accordingly set up mitigation strategies. Hence, 
safety domain knowledge is necessary in the design of computer 
vision-based construction safety management. 

2.2. Ontology for representing construction safety knowledge 

Compared with a database schema, an ontology can represent 
knowledge with explicit and rich semantics, which can enable knowl
edge reasoning [18]. The concept of ontology within construction has 
been widely applied, and the benefits of knowledge representation and 
reasoning have been adopted in areas, such as risk and knowledge 
management [52]. For instance, Tserng et al. [53] developed an 
ontology-based framework to enhance safety management performance 
throughout the lifecycle of a project. In stark contrast, Wang and Bou
kamp [54] used ontology to represent the knowledge ingrained in ac
tivities, job steps, and hazards to improve the ability to query and share 
job hazard analysis (JHA) knowledge. This approach enabled Wang and 
Boukamp [54] to develop an ontological mechanism for reasoning safety 
rules for activities. 

With the ontology, domain knowledge can be converted into a 
machine-processable format, which can support the development of 
intelligent applications for hazard identification and safety manage
ment. For example, Lu et al. [20] established a construction safety 
checking ontology, in which safety checking constraints were encoded 
into semantic rules for safety checking based on semantic rule lan
guages. Zhang et al. [21] developed a JHA ontology model to store and 
re-use construction safety-related knowledge. Xing et al. [14] proposed a 
domain ontology (SRI-Onto) to formalize safety knowledge considering 
that hazard identification of metro construction is a 
knowledge-intensive process. Wu et al. [22] used ontology to represent 
metro accidents to facilitate efficient knowledge retrieval and reasoning. 
Overall, these studies indicated that ontology provides a way to repre
sent safety knowledge explicitly and formally to further develop infor
mation system processes, such as knowledge retrieval and inference. 

2.3. Summary 

Studies combining ontology and computer vision techniques to 
facilitate safety management in construction are limited. Tang and 
Golparvar-Fard [50] developed a design of a language–image 

framework to understand and detect semantic roles of activities 
mentioned in safety rules. Xiong et al. [24] initially attempted to apply 
safety knowledge to computer vision systems and created an automated 
hazard identification system for hazard identification based on the 
aforementioned work. Safety guidelines from textual regulations were 
represented in this system by scene graphs in a three-tuple format to 
evaluate the operation descriptions generated from site videos. How
ever, this approach lacks discussions on ontology-based knowledge 
modeling, and the developed ontology model is simple. The literature 
review of computer vision by Zhong et al. [12] and Fang et al. [23] 
indicated the importance of ontology to computer vision. For instance, 
Fang et al. [23] suggested that the computer-oriented and logic-based 
features embedded within ontology can provide access to regulation 
knowledge for computer vision systems. Meanwhile, Zhong et al. [51] 
developed an ontology model to describe contents from images for 
following semantically retrieval; however, the hazard in images is 
manually identified, which is a time-consuming task. Similarly, Fang 
et al. [25] used the Neo4j database to visualize and store the visual in
formation detected by the computer vision algorithm for hazard iden
tification. The knowledge graph structure of Neo4j can support semantic 
query; however, this structure lacks a reasoning capability, which is 
important for knowledge-intensive safety management [14]. 

Overall, supplementing ontological safety knowledge can give 
meaning to these visual elements obtained by computer vision; for 
instance, reasoning hazards and listing mitigation suggestions, which 
are performed by safety managers. The ontology model should be 
properly developed to ensure its capability to represent knowledge in 
the domain of construction safety management formally. Additionally, 
the visual information acquired by computer vision algorithms should 
be linked with the instances in the ontology model. Developing an 
explicit, extendable, and accessible knowledge base for computer vision 
for construction safety management remains unclear despite insightful 
findings from previous works. 

3. Research approach 

A conceptual framework, which can combine ontology-based regu
lation knowledge with visual information extracted from images by 
computer vision algorithms, is developed in this paper based on our 
previous efforts [33]. The proposed framework comprises three modules 
(Fig. 2).  

1. Computer vision module: Detects visual information, including objects 
and their spatial relationships from images collected from con
struction sites, which are then converted into instances in the 
ontology models for knowledge reasoning.  

2. Ontology module: Formalizes the domain knowledge of construction 
safety management to provide extracted visual information with 
semantic concepts, which contain definitions of taxonomies and 

Fig. 2. Framework of the proposed method.  
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properties. Inference rules representing regulatory knowledge are 
needed for complex hazard identification because construction 
safety management is a knowledge-intensive process [14,52]. The 
SWRL rules for knowledge inference are encoded in the reasoning 
engine.  

3. Knowledge reasoning module: Potential hazards from images and 
mitigation measures are inferred by performing rule checking on the 
visual inputs detected by the computer vision module. Additionally, 
the inferred information would be attached to the images for further 
efficient image retrieval or processing. 

3.1. Computer vision-based visual information identification 

The computer vision module, acting as “human eyes” in the inte
grated framework, aims to identify visual information from on-site 

images, which is regarded as inputs for ontology-based hazard inference. 
From the perspective of hazard identification, the following visual in
formation should be extracted from on-site images: objects (e.g., people, 
equipment, materials, and environment elements) and their spatial 
relationships. 

Various deep learning algorithms, such as SSD [43], faster R–CNN 
[44], and Mask R–CNN [45], have been developed for a variety of 
different purposes in construction. Among these algorithms, the Mask 
R–CNN can detect multiple objects with higher levels of accuracy than 
other deep-learning algorithms because it extends Faster R–CNN by 
adding a branch for predicting segmentation masks on each Region of 
Interest (RoI) [45]. The Mask R–CNN has good performance on instance 
segmentation and can recognize overlapped objects, which has been 
evaluated in our previous study [33]. Therefore, Mask R–CNN is selected 
to detect objects from images. 

Fig. 3 shows the entire workflow of Mask R–CNN–based visual in
formation detection. The network architecture of Mask R–CNN, which 
contains two steps [45]: (1) to extract feature maps of an entire image 
from the residual and the feature pyramid networks as inputs. A region 
proposal network is then used to define regions of interest (ROIs); (2) a 
RoIAlign layer is adopted to extract spatial locations from each candi
date box and perform classification, bounding box regression, and mask 
generation. Parameters used in this research are similar to those of He 
et al. [45]. The RoIAlign, which uses bilinear interpolation, can generate 
exact spatial locations to compute the exact values of the input features 
and avoid any quantization of its boundaries or bins. 

In addition to objects detection, spatial relationships between objects 
are needed for hazard reasoning. In this paper, three types of spatial 
relationships are considered by calculating Intersection over Union 
(IoU) with Eq. (1): (1) on; (2) overlap; and (3) away. Specifically, the 
overlapping areas between objects are used to determine the spatial 
relationships. For example, when the value of IoU (A, B) belongs to (0, 
1), the spatial relationship of object A and object B is overlapped as 
shown in Fig. 3. Notably, the authors of this paper used the previous 
study [33] in which the Mask R–CNN method is used to detect workers 
traveling the structural supports. Therefore, only three spatial re
lationships are taken into considerations. We admit that there would be 
optimal algorithms for detecting visual information from images and 
more spatial relationships should be considered for reasoning different 
types of hazards on construction sites. However, rather than presenting a 
novel method to identify all objects and spatial relationships, this paper 
aims to propose a conceptual framework, which introduces a formal 
ontology for computer vision systems, to close the semantic gap between 
low-level visual features and high-level knowledge needed in construc
tion safety management. 

IoU(A,B)=
area (A) ∩ area (B)

min{area(A), area(B)
=

⎧
⎨

⎩

1, on
(0, 1), overlap
0, away

(1)  

3.2. Ontology model for safety management 

Safety knowledge and the experience of experts must be presented in 
an understandable format by a computer. Thus, the developed ontology 

Fig. 3. Mask R–CNN based visual information detection.  

Fig. 4. Development method of the ontology model.  
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model enables the computable representation of safety regulation 
knowledge. 

3.2.1. Ontology development for safety Hazard identification and 
mitigation 

Ontology is used to standardize the description of safety knowledge 
and facilitate the reasoning of hazards. Safety knowledge is modeled and 
represented using the following five steps (Fig. 4) [26].  

1. Define the purpose and scope of the hazard ontology model.  
2. Review existing ontologies.  
3. Enumerate important terms.  
4. Define classes, properties, and relations.  
5. Create instances based on the output of the computer vision module. 

Guided by the aforementioned steps, a meta-ontology model can be 
developed to standardize the description of construction safety 
knowledge. 

After reviewing existing ontologies [14,21,28], the JHA ontology 
introduced by Zhang et al. [21] is used to develop the meta-ontology 
model, which comprises the following: (1) products, (2) process, and 
(2) safety. Six top-level classes are used to represent safety knowledge on 
construction sites. These classes include Building Elements, Activity, 
Resource, Precursor, Potential Hazard, and Mitigation Measurement. The 
meta-ontology and relations between these classes are presented in 
Fig. 5. 

3.2.2. Ontology definition of safety Hazard knowledge 
Engineering regulations and manuals in construction form a source 

of domain knowledge, which can be utilized for hazard identification 
and safety management (Fang et al., 2020). Therefore, the class taxon
omies were identified based on the selected knowledge sources, 
including “Unified Regulation for Construction Quality Acceptance of 
Construction Engineering (gb50300-2017),” “Building Engineering 
Measurement Regulations,” “Industry Foundation Classes (IFC) stan
dards,” “Occupational Injury and Illness Classification Manual,” and 
“Building Construction Safety Inspection Regulation.” A part of the 
taxonomy of the developed ontology is presented as shown in Fig. 6. 

Notably, no perfect ontology and optimum concept hierarchy are 
available [55]. Thus, the proposed ontology does not completely cover a 
domain of interest. Consequently, the taxonomy of ontologies can be 
developed for different applications. 

The Products Model, which accommodates building elements, relates 
to its components (e.g., beam, column, door, and wall that are aligned 
with the IFC schema) and safety (e.g., temporary facilities and support 
structures). The Process Model contains activities and the necessary 
building resources. The taxonomy of activity is based on the regulation 
of the “Unified Regulation for Construction Quality Acceptance of 
Construction Engineering (gb50300-2017)” and the “Building Engi
neering Measurement Regulations.” The resource is classified into labor, 
equipment, and material, which provide the connection between se
mantic concepts and objects extracted from images. 

The Safety Model includes the potential hazards on construction sites 
and the corresponding precursors and mitigation measurements. The 
taxonomy of this model is based on safety regulations, such as the 
“Occupational Injury and Illness Classification Manual” and the 
“Building Construction Safety Inspection Regulation.” For example, the 
regulation of the “Quality and Safety Inspection Guide of Urban Rail 
Transit Engineering” can be used as a reference to examine hazardous 
events of the construction procedures in China. The potential hazards 
relating to tasks performed during construction and techniques 
employed can be classified into 21 inspection categories, such as safety 
management, fastener-type scaffolding, full-style scaffolding, founda
tion pit support engineering, template engineering, and hoisting. 

Fig. 5. Top-level classes in the meta-ontology model.  

Fig. 6. Part of the taxonomy of construction safety knowledge.  
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Each precursor is associated with multiple potential hazards through 
the “cause hazards” property. Each potential hazard is controlled by 
some mitigation recommendation to eliminate or reduce the hazard. 

The class taxonomies cannot provide sufficient information to 
describe the overall safety hazard. The properties refer to the 

characteristics that describe each of the classes [55]. Two types of 
properties are identified in this paper: (1) object property reflecting 
relations between two classes and (2) data property reflecting relations 
between classes and values. For example, some essential object and data 
properties between the concepts defined in the meta-ontology respec
tively presented in Tables 1 and 2 are listed. 

3.3. Knowledge reasoning for Hazard identification and mitigation 

Hazards and the corresponding mitigation measures are inferred by 
comparing the visual information detected by the computer vision 
module with the safety rules defined in the ontology model. Herein, the 
visual information must be mapped with the defined instance in the 
developed ontology model. Additionally, safety knowledge should be 
encoded into rules based on the relevant regulations. 

3.3.1. Information mapping from visual information to ontology instances 
Visual information obtained from images, including objects and their 

spatial relationships, is identified and extracted as the input for creating 
instances in the ontology model for knowledge reasoning. The identified 
objects in the computer vision-based module and their relationships are 
outputted in the eXtensible Markup Language (XML), while the safety 
knowledge in the ontology model is described in the Ontology Web 
Language (OWL). OWL is a W3C recommended language for ontology 
representation on the semantic web, which enables the users to describe 
the information in separate scopes and different schemas [56]. The 
XS2OWL is used as the conversion method between XML and OWL. The 
mapping relations of XS2OWL are listed in Table 3. The classification 
label in XML is converted into “owl:class” in OWL using the XS2OWL. 
The spatial relationships are transformed into “owl: dataProperty” in 
OWL. Therefore, the visual information detected by a specific computer 
vision algorithm can be stored in the ontology model for safety hazard 
knowledge reasoning. 

3.3.2. Encoding safety knowledge into rules 
Safety hazard identification is a knowledge-intensive process that 

adheres to rules [52], which can be formatted into a specific represen
tation language, such as N3Logic, Rule Interchange Format, and SWRL. 
The SWRL is used to represent rules for safety knowledge reasoning 
because this rule language is tightly integrated with ontology [57]. 
Moreover, the SWRL offers powerful deductive reasoning abilities by 
allowing users to write Horn-like rules based on OWL concepts. The 
context-driven hazard identification can be implemented because the 
SWRL rule is expressed in terms of ontology concepts (classes, proper
ties, and instances). Each SWRL rule contains an antecedent and 
consequent part. Both parts comprise positive conjunctions of atoms; for 
example, the typical SWRL rule is shown as follows:  

C(x) ^ P(x,y) ^ SameAs(y,z) → M(x,z),                                                       

where C(x) is an atom, “C” and “M” are classes in OWL ontology, “x” is 
the instance of class “C,” “P” represents data or object properties, “y” can 
be a value or instance, and “SameAs” is used to describe equal re
lationships. The following SWRL rule can be written based on these 
atoms to define the constraint for representing construction safety 
knowledge. The rule is triggered to execute knowledge inference once 
the antecedents of a rule are satisfied. The new facts are deduced and 
stored after executing the rule. 

Specific safety regulations and the experience of experts are coded 
using the SWRL rule formats, which are compatible with ontology 
classes and relationships. For example, Fig. 7 shows some hidden 
property rules between the top-level classes in the meta-ontology model 
(i.e., “Building Elements,” “Activity,” “Resource,” “Precursor,” “Poten
tial Hazard,” and “Mitigation Measurement”), which can be represented 
in the SWRL rules as follows. 

SWRL Rule1: 

Table 1 
Part of the object properties.  

Object Property Domain Range Characteristic 

producedBy Building 
element 

Activity Inverse 
functional 

Produce Activity Building element Functional 
needResource Activity Resource Inverse 

functional 
needLabor Activity Labor Inverse 

functional 
beUsedIn Resource Activity Functional 
hasPrecursor Activity Precursor Inverse 

functional 
causeHazard Precursor Potential hazard Inverse 

functional 
controlledBy Potential 

hazard 
Mitigation 
Recommendation 

Inverse 
functional 

hasUnsafeBehavior Labor Unsafe behavior Functional 
hasUnsafeStatus Element Unsafe status Functional 
isPartOf – – Functional  

Table 2 
Part of the data properties.  

Object Property Domain Value Characteristic 

hasE_ID Building element int Functional 
hasE_Location Building element string Functional 
hasDimension Building element decimal Functional 
hasRelativeRelationship Building element string Functional 
hasFrequency Activity int Functional 
hasTime Activity dateTime Functional 
isOccupationOf Labor string Functional 
hasSpatialRelationship Labor string Functional 
hasBodilyReaction Labor string Functional 
hasL_ID Labor int Functional 
hasSeverity Potential hazard string Functional 
hasLikelihood Potential hazard string Functional 
hasMaxArrestForce Safeguard decimal Functional 
hasS_ID Safeguard int Functional  

Table 3 
Mapping relations between XML and OWL.  

XML Schema OWL Schema 

Complex Type Class 
Simple Datatype Datatype Declaration 
Element Datatype Property; Object Property 
Attribute Datatype Property 
Sequence Unnamed Class-Intersection 
Choice Unnamed Class-Union 
Annotation Comment  

Fig. 7. Property rules between top-level classes.  
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Building_Element(?x) ^ Activity(?y) ^ Resource(?z) ^ Precursor(?a) ^ 
Potential_Hazard(?b) ^ Mitigation_Recommendation(?c) ^ producedBy(? 
x, ?y) ^ needResource(?y, ?z) ^ hasPrecursor(?y, ?a) ^ causeHazard(?a, ? 
b) ^ controlledBy(?b, ?c) → controlledBy(?x, ?c). 

If X belongs to the “Building Elements,” X is generated by “Activity” 
Y, Y requires “Resource” Z, Y has “Resource” A, A may generate “Po
tential Hazard” B, and B is controlled by “Mitigation Measurement” C, 
then X should also be controlled by preventive measures C. 

Overall, the visual information extracted from the construction site 
using the computer vision module can be converted into the instances in 
the ontology model. The SWRL rules can then be executed in an infer
ence engine to recognize hazards and justify the mitigation measures. 

Fig. 8. Structural support for deep foundation pits.  

Fig. 9. Examples of visual information detection in computer vision module.  

Fig. 10. Developed prototype ontology in Protégé.  
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4. Case study 

Deep foundation pits are the major activity that must be performed 
for the underground construction of a metro-system. The construction of 
the pits invariably requires the deployment of concrete and steel sup
ports to stabilize soil and transfer loads. People in China tend to traverse 
the structural supports over deep foundation pits (Fig. 8). Therefore, site 
management and engineers must regularly police this unsafe behavior, 
particularly because this behavior is prone to not wearing a safety 
harness even when required to work at heights [58]. Therefore, FFH 
hazards are selected to test the validity of the proposed framework. 

4.1. Site visual information detection 

In line with previous research [33], Mask R–CNN is used to detect 
various entities and their spatial relationships from images between 
people traversing structural supports over deep foundation pits. 

4.1.1. Dataset establishment and model training 
Working in close collaboration with the main contractor of the 

Wuhan Metro Project, monocular cameras were deployed across several 
construction sites. A database containing 2018 images of individuals 
walking and not walking on structural supports over deep foundation- 
pits was also constructed. The database is randomly divided into two 
parts: (1) training and (2) testing. The images for training and testing 
respectively contain objects of individuals and structural supports. A 
total of 1461 and 450 images are respectively used for training and 
validating. The other 107 images containing individuals walking on 
concrete/steel supports are used to test the trained Mask R–CNN model. 

Training images would be initially annotated manually based on the 
Labeling Tool example Flask App developed by Python. Furthermore, 
Microsoft’s Common Objects in Context (MS COCO) database containing 

more than 330 k images is adopted to train the Mask R–CNN to avoid 
bias. The pre-trained model would be fine-tuned by extracting features 
from annotated 1461 training images, and then a set of 450 testing 
images is used to test the Mask R–CNN model. 

4.1.2. Results performance of visual information detection 
The Mask R–CNN modular is conducted on a server equipped with a 

2.5 GHz Intel® Xeon® E5-2680 CPU, an NVIDIA(R) Tesla (TM) K80GPU, 
and 64 RAM. The learning rate is 0.001, which is decreased by 10 after 
all layers are fined tuned. The weight decay regularization is 0.0001 and 
the momentum is 0.9. The RPN network adopts five scales (32 × 32, 64 
× 64, 128 × 128, 256 × 256, and 512 × 512 pixels) and three aspect 
ratios (1:1, 1:2, and 2:1) while the stride of anchors is 1. The precision 
rates on detecting workers, steel supports, and cement supports are 
100%, 100%, and 99%, while the recall rates are 84%, 74%, and 81%, 
respectively. The precision and recall rates on spatial relationship 
detection are 75% and 90%, respectively. For example, Fig. 8 shows that 
objects (i.e., person and the bounding box) and their spatial relation
ships are detected using the Mask R–CNN algorithm. The left side of 
Fig. 9 indicates the mask for semantic segmentation. The different 
colored bounding boxes in Fig. 9 indicate the location of targets. The 
upper left corner of the bounding box indicates the target category label 
(such as the concrete support) and confidence (0.999). The three types 
of information form the input into the overlap detection for attribute 
extraction, and the spatial relationship between the “labor” and the 
“concrete support” is “on.” The extracted visual information is converted 
into the OWL format to create instances in the ontology model for safety 
knowledge reasoning. Numerous advanced algorithms extracting visual 
information are available. However, the experiment aims to validate the 
proposed conceptual framework rather than examine the performance 
of Mask R–CNN with other deep learning algorithms. Built on our pre
vious study of Fang et al. [33] who used the Mask R–CNN approach to 

Fig. 11. Ontology checking consistent error in Pellet.  
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detect workers traveling structural supports, this paper proposed a 
conceptual framework to help computer vision function similarly to the 
human thinking model in construction safety management by inte
grating a formal ontology model. Specific details of the Mask R–CNN 
algorithm are presented in our previous study [33]. 

4.2. Ontology-based knowledge modeling for FFH safety 

4.2.1. Definition of FFH ontology 
A prototype FFH ontology model was developed in Protégé 5.0 to 

represent the domain knowledge for FFH safety. Fig. 10 presents the 
class hierarchy of the ontology model. 

The consistency of the developed ontology model in Protégé is 
checked using the Pellet reasoner [59]. The consistency criterion de
termines whether the developed ontology includes any contradictory 
facts. This criterion also ensures that the conclusions are inferential and 
semantically consistent. Pellet, as a logic reasoner, not only detects 
inconsistent ontology concepts but also supports the diagnosis and res
olution of errors. Fig. 11 shows the result of consistent checking using 
Protégé. The value of “hasBodyReaction” data property should be 
“string” rather than the “int.” 

4.2.1. Development of FFH rules 
The SWRL rules were used to reason hazards and their corresponding 

mitigations, which have been encoded in the SWRLTab plug-in in 
Protégé 5.0. The SWRLTab plug-in allows users to add or modify SWRL 
rules in Protégé. Fig. 12 shows the SWRL rules. The FFH safety knowl
edge sources of these rules include “Technical code for the safety of 
working at the height of building construction (JGJ 80–2016)” and 
“Technical code for the safety of deep building foundation excavations 
(JGJ 311–2013).” For example, the regulation “Technical code for the 

safety of working at the height of building construction (JGJ 80–2016)” 
explicitly stipulates that people are not allowed to traverse the structural 
supports over a deep foundation on supports because this action easily 
leads to FFH hazards. Additionally, some mitigation measurements of 
FFH, such as wearing appropriate personal protective equipment and 
setting reminders or the protective railing shall at the edge, are available 
in the “Technical code for the safety of working at the height of building 
construction (JGJ 80–2016).” The regulatory knowledge can be formally 
represented by the SWRL rules as follows. 

Rule 1: 
Concrete_Support(?x) ^ hasRelativeRelationship(?x, “on”) ^ Labor(? 

y) ^ hasSpatialRelationship(?y, ?z) ^ swrlb:stringEqualIgnoreCase(?z, 
“on”) → hasPrecursor(?y, Walking_On_Supports) ^ causeHazard 
(Fall_From_Building_Structures). 

Rule 2: 
Walking_On_Supports(?a) ^ Fall_From_Building_Structures(?b) ^ cau

seHazard(?a, ?b) → controlledBy(?b, Protective_Space) ^ controlledBy(? 
b, Safeguard). 

With the ontology model and SWRL rules, FFH safety knowledge 
from textual regulations can be formally represented to allow computer 
access. The developed ontology model provides a knowledge base for 
the visual information extracted by computer vision algorithms and 
helps the computer vision system understand the meaning behind the 
objects. Considering construction safety management, the ontological 
knowledge base can infer potential FFH hazards and list corresponding 
mitigation measures based on the visual inputs obtained by the com
puter vision module. 

4.3. Mapping of visual information and ontology instances 

The visual information extracted by the computer vision module was 

Fig. 12. Developed SWRL rules in the Protégé.  
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connected with the developed ontology model by creating an automated 
instance. Fig. 13 shows the information mapping process. Fig. 13(a) 
shows that the objects (i.e., concrete supports, steel supports, and la
bors) and their spatial relationship (i.e., the labor is on the concrete 
support) are detected in the computer vision module using the Mask 
R–CNN. The visual information is outputted into an XML format and 
then converted into the OWL format using the XS2OWL as shown in 
Fig. 13(b). The classification label of detected objects in XML is con
verted into “owl:class” in OWL, while spatial relationships are trans
formed into “owl: dataProperty” in OWL. As shown in Fig. 13(c), the 
extracted visual information is finally mapped into instances in Protégé 
for following knowledge reasoning. 

4.4. Safety knowledge reasoning from images 

Knowledge reasoning can be implemented in Protégé by using the 
rule engine named Drools after mapping the visual information into 

instances in the ontology model (Fig. 14). 
Knowledge reasoning is conducted in the Drools rule engine, in 

which the general structure is “When A, Then B” [60]. The basic 
framework of the Drools rules engine comprises a fact base, a rule base, 
and an execution engine. Hazards and corresponding mitigations can be 
inferred using the Drools reasoning engine. As shown in Fig. 15, the 
hazard scene in the image of Fig. 9 was inferred on the basis of devel
oped SWRL rules and created instances. The reasoning results are 
regarded as new knowledge, which can be stored in the fact base. 

Fig. 16 presents the reasoning results in the scene of Fig. 9. Person_1 
has the precursor named “walking on supports,” which would cause the 
hazard “Falling_From_Building_Structures.” Visual information captured 
by the computer vision system can be endowed with safety meanings by 
knowledge reasoning using the developed ontology model (known as the 
fact base) and the SWRL rules (known as the rule base). Specifically, 
potential hazards in the image can be identified, and the corresponding 
mitigations preventing these hazards can also be reasoned similarly to 
humans. Different from traditional computer vision approaches, the FFH 
hazard in this scene was detected on the basis of rules. Moreover, the 
mitigations (e.g., wearing safeguards and setting protective space) can 
be inferred for safety managers, which can prevent potential hazards. 

The reasoning results demonstrate the theoretical and technical 
feasibility of the proposed conceptual framework. The safety knowledge 
can be explicitly represented and combined with the visual information 
extracted by computer vision algorithms through the integration of 
ontology techniques. The FFH hazard and its mitigation measures can 
then be reasoned by performing rule checking on the site visual infor
mation extracted by Mask R–CNN. The ontology model with SWRL rules 
provides a formal and explicit safety knowledge base to computer vision 
systems, which can help computer vision operate similarly to a human 
thinking model in construction safety management. Therefore, the 

Fig. 13. Mapping visual information with instances in the ontology.  

Fig. 14. Implementing soft environment for knowledge in Protégé.  
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proposed framework can facilitate safety management by automatically 
reasoning the hazards and corresponding mitigation measures for safety 
managers. 

Furthermore, the proposed framework can attach the extracted 

visual information (low-level features) and semantic hazard information 
(high-level knowledge) to initial images, which can facilitate the image 
annotation and semantic retrieval [61]. The extracted objects can be 
linked with semantic concepts through the developed ontology model, 

Fig. 15. Inference process of the scene presented in Fig. 11 (a person is traversing the concrete support).  

Fig. 16. Reasoning results of hazards and mitigations in the scene of Fig. 9.  
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and the hazard information can enrich the description of images. For 
example, Fig. 17 shows the extracted information (e.g., labor_1, concrete 
supports, and steel support) and reasoned hazard information (e.g., 
Fall_From_Building_Structures) of the image (Fig. 9). The obtained images 
from the site can be re-used considering this semantic annotation. The 
explicit semantic may facilitate further image index and retrieval in a 
vast collection of images. 

5. Discussion and limitations 

The computer vision system is currently limited in linking the low- 
level visual information with high-level semantic meaning considering 
construction safety management, which is a knowledge-intensive task. A 
conceptual framework is proposed in this paper to imitate the human- 
based safety inspections, which depend on their prior knowledge to 
detect hazards in the workplace and organize corresponding measure
ments to prevent these hazards. In the developed framework, the com
puter vision acts as “human eyes,” which is responsible for extracting 
objects and their spatial relationships. The obtained visual information 
is regarded as inputs and is mapped to instances in the ontology model 
acting as the “human brain” to facilitate hazard inference. The result 
shows the developed framework is successful in knowledge-intensive 
construction safety management by semantically reasoning hazards 
and listing corresponding mitigations from on-site images. 

However, some limitations still exist in current research. First, a 
simple but common FFH hazard scene in China is used to test the 
theoretical feasibility of combining computer vision and ontology for 
knowledge-intensive hazard identification and mitigation, in which only 
three types of spatial relationship (on, overlap, and away) are examined. 
However, other spatial relationships, such as “left,” “right,” “above,” 
“blow,” and “aligned” must be detected for different types of hazard 

identification. Additionally, the developed conceptual framework has 
the potential to reason different types of hazards for safety managers if 
the computer vision algorithm can accurately detect visual information 
from images and the ontology model is enriched with various SWRL 
rules. Examples are shown in Fig. 18. Computer vision algorithms can be 
used to extract visual information from images; for example, detecting 
workers who travel the structural supports [33] and don’t wear the 
hardhat [11]. The extracted visual information is used as the input for 
rule-based hazard reasoning. With the extracted visual information and 
pre-defined rules, different types of hazards can be inferred. For 
instance, there are two types of hazards in Fig. 18 (a) and (b), namely, 
falling from height and head injuries. In this paper, we built on our 
previous study [33], and only a simple but common FFH hazard scene is 
used to show the theoretical feasibility of the proposed conceptual 
framework. Substantially complex scenes involving different types of 
hazards should be used for further validation of the framework in future 
studies. Moreover, prototype systems should be developed for further 
validation on the effectiveness of the proposed framework in construc
tion practices. 

Second, the capability of the computer vision module on capturing 
visual information is important for knowledge reasoning in the proposed 
framework. Specifically, acting as “human eyes,” accurate visual infor
mation detection from images is important because it is the input in 
following hazard inference. The ontological knowledge base is ineffec
tive without accurate inputs. Therefore, the accuracy and reliability of 
the computer vision module are essential. However, the computer vision 
is still slightly weak for practical implementation in the construction 
domain. On the one hand, the lack of sized construction image databases 
could affect its performance of deep learning algorithms [8]. On the 
other hand, occlusions also hinder this capability because construction 
sites are usually congested with materials, equipment, and structures of 

Fig. 17. Information annotation in the ontology model.  
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different heights and shapes, thus leading to massive blind spots for the 
cameras. Additionally, the camera cannot be installed if construction 
workers do not agree due to privacy concerns [12]. The Mask R–CNN is 
used in this paper due to its high performance in object detection and 
instance segmentation [45]. An array of robust vision-based algorithms 
are available; however, improving the accuracy of computer vision al
gorithms or finding the optimal algorithm is not the aim of this paper. 

Third, a finite set of rules are encoded in this paper to validate the 
theoretical feasibility of the proposed framework. More SWRL rules for 
different types of hazards should be encoded in the future, aiming to 
satisfy the requirement of construction safety management in different 
hazardous scenes. Essentially, the ontology model and SWRL rules act as 
‘human brain’ in the proposed framework, which aim to provide safety 
regulatory knowledge for hazard identification and prevention. Hence, 

the enrichment of SWRL rules is important to its effectiveness. However, 
encoding knowledge of numerous safety regulations into SWRL rules is 
time-consuming, which may hinder the practical application of the 
developed framework. 

6. Conclusion 

This paper introduces a conceptual framework integrating computer 
vision and ontology for construction safety management. The ontology- 
based representation of safety knowledge gives meaning to the acquired 
inputs of computer vision algorithms. Similar to humans, these algo
rithms can support safety inspection by automatically reasoning hazards 
from on-site photos and listing corresponding mitigation suggestions. In 
particular, a Mask R–CNN is used to recognize objects and spatial 

Fig. 18. Process of detecting various types of hazards.  
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relationships because it can accurately detect multiple objects from 
images. The extracted visual information is connected with the ontology 
concepts by creating instances using XS2OWL. Hazards from images and 
their corresponding mitigations are then inferred using a reasoning 
engine based on the encoded SWRL rules. Finally, an FFH example is 
used to validate the feasibility of the proposed framework and demon
strate its capability to infer hazards by combining regulation knowledge 
automatically. 

Overall, the developed theoretical framework can help computer 
vision function similarly to the human thinking model in construction 
safety management. The framework also provides site managers and 
engineers with a creative method to complement the cadre of hazard 
management approaches used to manage safety in construction. The 
accuracy of detecting objects and spatial relationships from images or 
videos can be markedly enhanced with the advancement of deep 
learning algorithms. For example, more than 1000 projects have used 
the commercial product named SmartVid’s AI engine for detecting hard 
hats, gloves, and safety vests of workers [62]. Today, hundreds to 
thousands of images were acquired in construction sites on a daily basis 
[63], and daily construction activities can be recorded by the deployed 
cameras. The visual data can be used as the foundation for safety 
management. Hazards or near-misses in daily construction tasks and 
corresponding suggestions can be reasoned automatically during the 
application of the proposed framework to construction projects. The 
inference information can be sent to safety managers for review and 
further processing. Therefore, this information provides a means of 
frequent safety inspection and can reduce the workloads of safety 
managers. Moreover, the framework offers a probability for the con
struction company to conduct large-scale and frequent safety in
spections. Relying on the advanced computer vision algorithms and the 
complete ontological knowledge base, different projects can statistically 
near-miss with high frequency and low severity and build their haz
ardous patterns for further proactive prevention. Hazardous patterns 
may differ from projects and construction companies. For instance, 
Raviv et al. [64] quantitatively analyzed tower crane-related accidents 
from two construction companies in Israel. They found that one suffered 
from technical failure, while the other suffered from rigging and 
signaling failures. Additionally, the raw data would be annotated with 
inferred information, which helps improve the completeness and accu
racy of data for future machine learning training and development 
purposes. Real-time identification of unsafe acts during construction 
may lead to perfunctory intervention by management, which can result 
in immediate behavior modification. In addition, the acquired video can 
be used to provide people with direct visual feedback and be used as a 
tool for safety education. 

The scientific contributions of the paper lie in the following: (1) the 
integrated framework combining advantages of computer vision (acting 
as the human eyes) and ontology (acting as the human brain), producing 
intelligent construction safety management; (2) the developed onto
logical model, a formal way to represent safety domain knowledge with 
SWRL rules, can be easily extended to the future hazardous scene. 
Relying on advanced computer vision algorithms and enriched ontology 
models, different hazards and these mitigations from images or videos 
can be automatically identified for safety inspectors on basis of the 
proposed framework. 
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